Safety Reviews of Research Reactors in Germany – Graded Approach for the periodic safety review according to § 19a of the Atomic Energy Act

Regional Meeting on Application of Code of Conduct
02. – 06. November 2015, Lisboa

K. Niedzwiedz
Federal Office for Radiation Protection Germany
Outline

• Legislative and Regulatory Framework
 ✓ Guides for the Periodic Safety Review of NPPs

• Research Reactors Facilities
 ✓ Classification of Research Reactors

• Graded Approach for the periodic safety review of RR
§ 7 Licensing of nuclear installations

- construction and operation (not granted for NPP any more)
- essential modification of installation or its operation
- decommissioning

§ 19 Supervision

- continuous supervision during entire lifetime

§ 19a Verification, evaluation and continuous improvement of the installation

- since 2002 mandatory for NPPs
- since 2010 mandatory for all nuclear installations, including RR
Legislative and Regulatory Framework:

Regulatory Body

Federal Ministry for the Environment, Nature Conservation Building and Nuclear Safety (BMUB)

Federal Office for Radiation Protection (BfS)

Federal oversight of the lawfulness and expediency of the actions of the Länder, federal regulatory directive issues in single cases

Co-operation of federal and Länder governments with the aims to develop and uniformly apply regulations and to achieve an equal level of precaution throughout the federation

Länder Committee for Nuclear Energy

Land ministry - responsible for licensing and supervision of nuclear installations

Subordinate Land authorities

Advisory committees and independent authorised expert organisations, e.g.:
- Reactor Safety Commission (RSK)
- Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)

Independent authorised technical expert organisations, e.g. TÜV
Guides for the Periodic Safety Review of NPPs

• Current description of the facility
 ✓ an up-to-date survey of the safety concept, the facility's design features and of all substantial measures important for safety
 ✓ description of the structures, systems and equipment important for safety

• Deterministic safety status analysis
 ✓ accident analysis and protection goal oriented review of the systems (availability and effectiveness)
 ✓ systems important for safety, including these for the very rear events and (severe) accident management (e. g. its availability, function, structure, spatial arrangement, operating mode, efficiency and reliability)
 ✓ operational management and evaluation of operating experience

• Probabilistic safety analysis
 ✓ supplementary to the deterministic assessment of the facility's safety status and its operational safety
 ✓ determination of the necessity and urgency of safety improvements

• Deterministic analysis on physical protection
 ✓ overview on an overall condition associated with security aspects of a facility, refers to technical, personal and administrative - organizational measures

• In-depth analyses of individual aspects
 ✓ scenarios and event sequences of special interest
In total 46 RR were built

Presently

- 7 in operation
- 10 permanently shut down or in decommissioning:
 - 4 permanently shutdown
 - 6 under decommissioning
- 29 decommission finished and released from nuclear regulatory control
FRM II: Munich High-flux Neutron Source

- First criticality in 2004
- Thermal power: 20 MW
- Compact core with a single cylindrical fuel element
 - Actually HEU in a $\text{U}_3\text{Si}_2\text{-Al}$ dispersion fuel with 93 % enrichment
 - (To be converted to \leq 50 % U 235 by end of year 2018)
- Pool type
- Reactor cooling
 - Light water cooled and heavy water moderated
 - Operational cooling system
 - Passive residual heat removal system
- Approximated activity inventory
 - I-131: 2.0×10^{16}
 - Cs-137: 1.6×10^{14}
BER II – Berlin Experimental Reactor Unit II

- First criticality in 1973
- Thermal power: 10 MW
- Reactor core
 - U$_3$Si$_2$-Al dispersion fuel
 - LEU fuel elements with 20% enrichment
- Pool reactor
- Reactor cooling
 - Light water cooled and moderated
 - Operational cooling system
 - Passive residual heat removal system
- Approximated activity inventory
 - I-131: 1.0E+16
 - Cs-137: 4.2E+14
FRMZ – TRIGA Mark II Reactor of the Mainz University

• First criticality in 1965
• Thermal power: 100 kW
• Pulsed operation: Peak 250 MW (0.03 s)

• Reactor core
 ✓ Uranium as fuel and
 zirconium hydride as moderator
 ✓ LEU fuel elements with 20 % enrichment

• Reactor cooling
 ✓ Light water cooled and moderated
 ✓ Passive operational cooling system

• Approximated activity inventory
 ✓ I-131: 1.0E+14
 ✓ Cs-137: 1.9E+13

www.kernchemie.uni-mainz.de
Zero-power Research Reactors

Siemens Training Reactor (SUR 100) (Stuttgart, Ulm and Furtwangen)

- First criticality in ’60s
- Thermal power: 100 mW
- Reactor core
 - U₃O₈ as fuel and
 - Polyethylene as moderator
 - LEU with 20 % enrichment
- No cooling system
- Approximated activity inventory
 - I-131: 1.0E+08
 - Cs-137: 5.1E+07

Training Reactor AKR 2 (Dresden)

- First criticality: 2005
- Thermal power: 2 W
- Reactor core
 - U₃O₈ as fuel and
 - Polyethylene as moderator
 - LEU with 20 % enrichment
- No cooling system
- Approximated activity inventory
 - I-131: 2.0E+09
 - Cs-137: 1.0E+09
Classification of RR - Criteria

- **Thermal power**
 - ✓ Nearly zero thermal power ($\lesssim 1 \text{ kW}$)
 - ✓ Small thermal power ($\lesssim 100 \text{ kW}$)
 - ✓ Medium thermal power ($\lesssim 1 \text{ MW}$)
 - ✓ Large thermal power ($\gtrsim 1 \text{ MW}$)

- **Hazard potential**
 - ✓ Most relevant radioactive materials: I-131 and Cs 137

- **Safety relevant systems**
 - ✓ No cooling
 - ✓ Operational cooling
 - ✓ Passive residual heat removal
 - ✓ Active residual heat removal
Classification of German RR - Results

- **10^8**
- **10^10**
- **10^12**
- **10^14**
- **10^16**
- **10^18**
- **10^20**

I - 131 equivalent [Bq]

P_{th} [MW]

- Typical German NPP
- TRIGA Mark II; operational cooling
- Larger reactors; passive residual heat removal
- Zero power reactors; no cooling

Bundesamt für Strahlenschutz
Graded Approach for the periodic safety review of RR

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>FRM II, BER II</th>
<th>FRMZ</th>
<th>AKR-2, SURs</th>
</tr>
</thead>
</table>
| 1. | Current facility and systems description
- an up-to-date facility description
- description of systems and components (e.g. its safety function, design and configuration)
- technical documentation | ✓ | ✓ | ✓ |
| 2. | Operational management and experience
- reactor organization
- applications for the modification
- operational documentation
- deviations from normal operation
- in-service maintenance and maintenance procedures
- experiences from other reactors and research findings
- operating and inspection manuals
- quality assurance
- maintenance of technical competences and knowledge
- radiation protection
- occupational safety
- handling of irradiated samples | ✓ | ✓ | ✓ |
| 3. | Deterministic safety status analysis
- accident analyses und protection goal oriented system inspection (incl. availability and effectiveness)
- ageing management of safety equipment
- safety precautions (e.g. specific accident instrumentation, measures against internal and external events, measures against human factors, combination of different incidents)
- concept of severe accident management (incl. measures for rare events) | ✓ | ✓ | - 1 |
| 4. | Probabilistic safety analysis (supplementary to the deterministic assessment in case of external events) | ✓ | - | - |
| 5. | Physical protection\(^2\)
\(^2\) Has to be agreed with the department responsible for nuclear security. | ✓ | ✓ | ✓ |
| 6. | IT-Security\(^2\)
\(^2\) Has to be agreed with the department responsible for nuclear security. | ✓ | - 1 | - 1 |

\(^1\) May be included under pt. 1 to an adequate extend.

\(^2\) Has to be agreed with the department responsible for nuclear security.
Conclusions

✓ According to the legislative framework the periodic safety reviews in Germany are obligatory for all research reactors facilities (including zero-power facilities)

✓ German research reactors in operation may be classified into three groups according to their risk potential

✓ Framework for the periodic safety review of German research reactors specifies the requirements for individual risk potential group based on the principle of graded approach
Thank you for your attention!